Practical Design, Reliability and Service Life Predictions of Tribological Contacts

in Drive Systems of a Medium-Lubricated Pump, a self-sharpening Blade and a Toothbrush.

Design, Reliability and Service Life Predictions

- » Challenges in product development
- » Practical oriented 3 steps to decide for a reliable design
- » Results in 3 design examples
 - » Pump drives, Diesel fuel lubricated wear-mechanism: fatigue
 - Control of abrasive wearprotection and self-sharpening
 - » Sliding wear in gear drives, tooth flanks

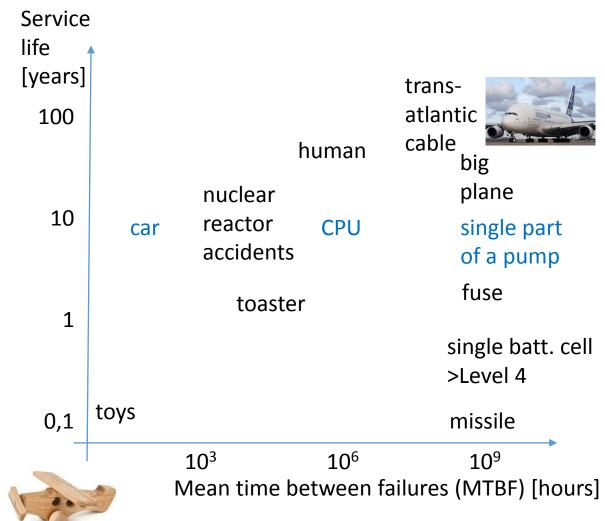
Self-Sharpening agriculture blade

Pump © Robert Bosch GmbH

Tooth-brush drive

Challenges in Product Development

- "Design to ..."
 vs. costs, milestones and timeline targets, delivery-dates
- » Avoid failures do it right the first time, prevent use of non robust designs, late changes or even failures (cost rule of 10th)
- » decision making, choose robust design and material selection in early state
- » investigation, description of all microscopic details still ongoing e.g. mixed friction => awareness of tribological complexity => focus on the correct reproduction of the behavior


- » clear, smart, safe
- » customer-oriented, market-oriented
- » functional and appropriate
- » suitable for demands
- » strength-based
- » material-appropriate
- » manufacturable
- » easy to assemble,, safe (poka yoke)
- » testable
- » ergonomic
- » diagnose-, network-compatible
- » recyclable

Challenges in Product Development

Reach service
 lifetime
 (sustainability, CO₂)
 at required failure
 rate

Challenges in Product Development

failure

1E-5

- » In established development processes e.g. VDI 2222 Reliability is not considered at all. However reliability estimation helps a lot in decision making.
- » Design for Reliability Top down: Reliability goals based on Safety Integration Level SIL/ASIL/DAL

drive 1E-6

or

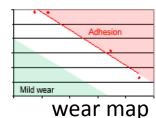
wear fatigue leak 1E-7

» Bottom up, for components and connections to compare different solutions and reach system reliability target

arget	Connection method	Bolt connection	Crimp connection	Solder	Weld connection
Requirements		7-			
disconnectable/ service-able/rer		Y	N	N	N
Certification/rel certification rea	lease (automotive/aviation sonable)	Y	Υ	Υ	Υ
Reliability rating	g [IEC1709],	0,5	0,26	0,069	0,05

Design, Reliability and Service Life Prediction Steps

Address + verify Requirements and Functions. Enables calc./simulation driven development, Analysis of **influencing** factors => robust Design Parameters dimensions loads


Service time, reliab.
safety factors
weight, costs
f(x, y)

e.g. wear maps and limits in parallel accelerated tests/tribometer

avoid wear mechanism if possible (robustness, optimization)

=> focus on the main service time limiting mechanism

Evaluate resulting stress caused by loads vs. strength/resistance (material test)

strength

- Estimate Reliability and Service time.
 - Verify and quality assurance with **Data** from products in production-accompanying testing and field (digital twins)
- » Enable a methodical comparison of different **Design** solutions!

1. Drive Design Variants and Tribo-Contact Matrix

Design Variants comparison

- » complex fuel distributing system in space limited center shaft => wear, cavitation
- » vs. oscillating/reverse sliding contact => high quality surfaces
- » vs. Cam-Roller Drive (dynamic motion, less and simpler parts)

Component 1	Component 2 medium diesel fuel	
Cam AISI 52100	roller high speed steel/S 6-5-2	Roller
Roller S 6-5	journal bearing	Cam shaft
Cam AISI 52100	journal bearings PEEK	Bearings

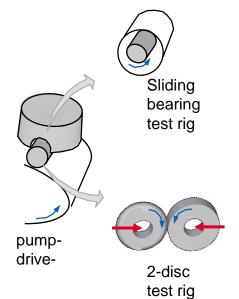
1. Design of high pressure pumps: Challenges

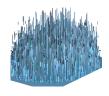
- » Automotive: Development of high pressure pump for 2000 bar+
- + pump drive changed from reverse sliding to Cam-Roller contact, which enables more robust design, low friction, high energy efficiency

- complete pump only lubricated with medium Diesel fuel therefore more environmental friendly/cleaner combustion without any oil which could enters into fuel
- » Required investigation and calculation models of contacts
- » Lake of understanding for medium lubrication concentrated contact even rolling bearing supplier without knowledge
- » Reliability and service time of rolling contacts under mixed lubrication condition

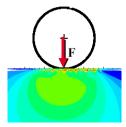
1. Design of high pressure pumps: Synergies

Comparable systems in field




Field results, failure rates and experiences

Tribometer-Testing



Investigation and analyses of wear mechanisms

Model and Simulation

Pressure distribution

Stress distribution

Lifetime model

$$\ln\left(\frac{1}{S}\right) \propto N^e \int_{V} \frac{\left(\tau - \tau_u\right)^c}{z^h} dV$$

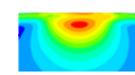
Optimization

1. Design of high pressure pumps: Influences

Approach of most important stress based influences on service time

Analytical | Simulation

→ functions and requirements	Load-cycles without	
✓ variables and influences	failure due to fatigue	


Design-parameter, design and manufacturing

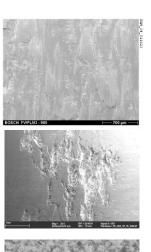
Geometry and tolerances	$L \sim p^{-8} \sim \tau^{-8}$
Diameter and tolerance	L ~ d ⁴
Length of contact and tolerance	L ~ I ⁴
Topographie, roughness, texture, running-in	L = f(macro-, micro-topo.)

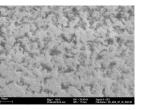
Load + operational conditions

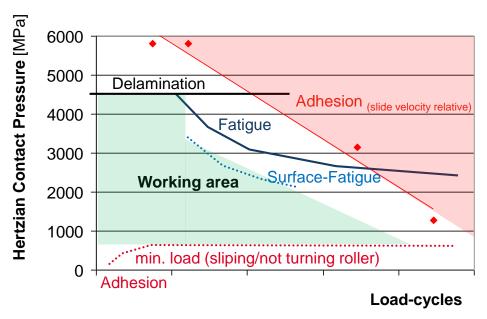
load	$L \sim F_N^{-4}$
friction force	$L \sim \tau^{-8} \approx \tau_{xy}^{-8} \approx (\sigma_x \mu)^{-8}$
Residual stresses	$L \sim \tau^{-8}$
(e.g. annealing, treatments, run-in)	

Lifetime model

$$\ln\left(\frac{1}{S}\right) \propto N^e \int_{V} \frac{\left(\tau - \tau_u\right)^c}{z^h} dV$$

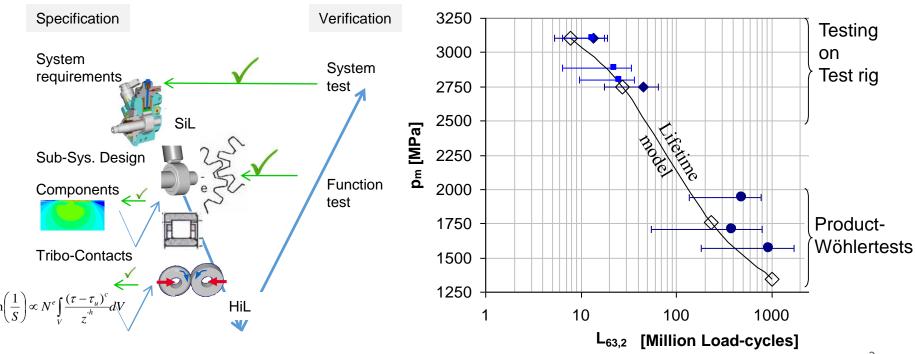

2. Mixed-lubrication failure Mechanism

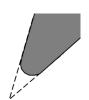

Working area and limits of a concentrated contact (schematically)


Adhesion

Fatigue cracks/pitting

Surface-Fatigue mikro-pitting mixed lubrication



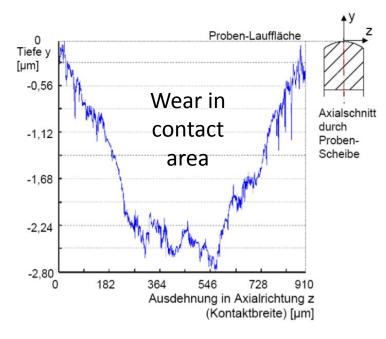


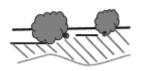
3. Verification and Service life time Model

Concept V-shape model Verification on component level: in the loop MiL, SiL, HiL

- Evaluation of influences and failures modes
- Tribometer testing an field Short Tribometer testing to verify strength and material behavior + verification in production accompanying and field data
- 3. Simulation and life time models => lifetime and reliability

Wear: good or bad?

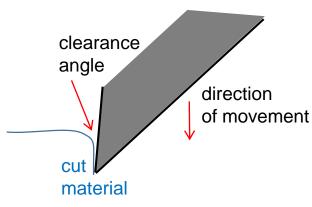


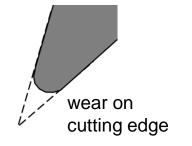

wear **positive** effects

- » Pressure peak reduction, during run in process e.g. edges, roughness
- » Run in grinding to increase tightness e.g. engine valve seats
- » Crack removal / avoid surface crack propagation e.g. train tracks
- » Self sharpening effect e.g. cutting tools, agriculture blades

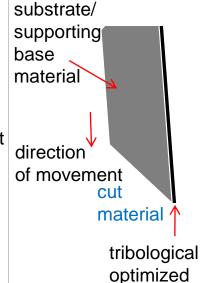
wear **negative** effects

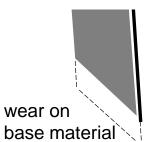
- » Loss of material e.g. blades get dull, wear parts
- » Loss of isolation e.g. eMobility
- Loss of corrosion protective coating/layers
 e.g. offshore photovoltaic
- » Loss of strength, fracture e.g. ICE tire breakage
- » Changes in operation e.g. increase of clearance

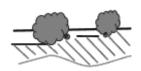




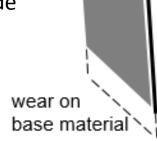
1. Design for abrasive wear Control

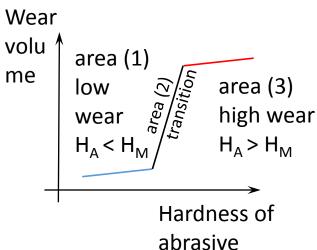


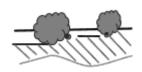

traditional cutting process with wear on cutting edge


Schematic design based on bionic principals of a tooth

hard coating

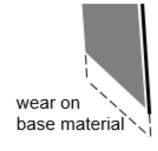

tribological optimized hard coating



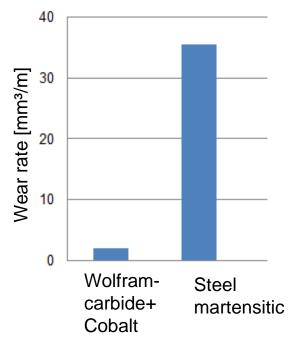

- » Design for self sharpening e.g. agriculture cutting blade
- » Dominating wear mechanism: abrasion

tribological optimized hard coating

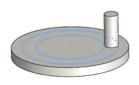
- » Influences on abrasive wear hardness ratio of the base and coating material ${\rm H_M}$ to the abrasive medium ${\rm H_{A.}}$
 - => Chosen material defines Wear-rate.
 - => Coating required in low wear area.



3. Strength and Service life time



- » Strength
 Abrasive Wear Test ASTM G65
- » Coatings
 - » Diamond like carbon **DLC** Chemical vapor deposition (CVD) expensive high end coating
 - » Wolfram-Carbide on martensitic steel via thermal spray seems to be more economic and offers comparable good results


» Field data blade after ~ 350 hours

tribological optimized hard coating

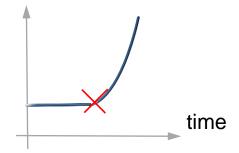
1. Design for service life: Variants and Influences

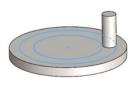
less contact engineering

- » Design comparison/selection main influencing factors
 - » contact pressure and distribution
 - » material combination
 - "lubricant" vs. dry
- » Optimization optimized gears, lubrication and motions
 - => lower contact pressure
 - => avoid breakage, deformation, adhesion/scuffing, ...

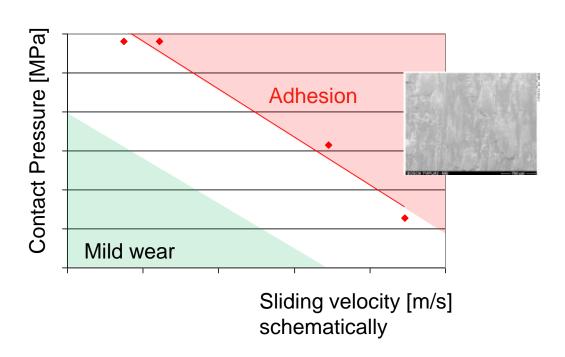
Wear

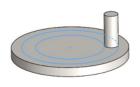
» Mixed lubrication regime, mild wear is dominating and lifetime limiting



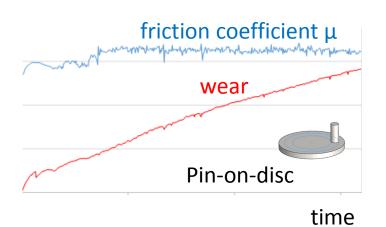

- metal inserts
- many parts
- difficult assembly
- + low friction
- + lifetime

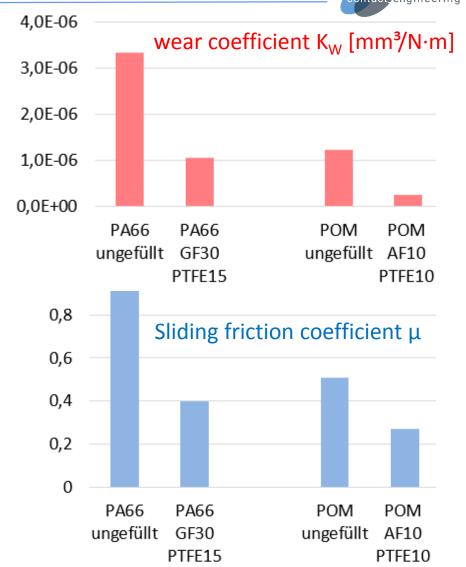
- Plastic material pressure limits
- higher friction higher loads
- + cost savings

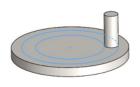




2. Wear Mechanism

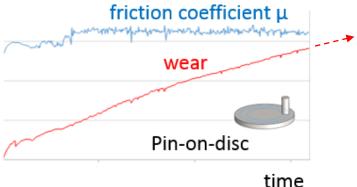

» Lifetime relevant mechanism is mild wear





3. Strength and Service time

Strength/wear resistance Derivation max. bearable normal load from experimental determination of wear coefficient K_W as a function of influencing factors (DoE)



3. Strength and lifetime Wear Prediction

Goal for Service Lifetime is reached. Model allows Wear prediction on different Levels

- 1. Analytical e.g. archard wear, VDI 2736
- » within linear wear/steady-state wear regime extrapolation possible
- » material suppliers offers wear rates and friction coefficient (pin-on-disc or accord. ASTM)
- 2. Local and iterative e.g. in FEM contact analysis load+sliding => wear <=> wear => load/stress
- serial production parallel/accompanying testing field results => prediction method based on adaptive continual learning

Summary

- » Shown easy however systematic approach enables a methodical comparison of different design solutions evaluates design components and influences also with respect to reliability
- Functions and requirements are considered Influences are evaluated to find robust designs
- 2. **Failure mechanism** are avoided if possible. _____1 However in focus are service time limiting Mechanism.
- 3. Tribometer testing supports/verifies Strength and Material behavior. In addition life time Models, production accompanying and field **Data** are considered
- » Approach has been successful applied in several design projects e.g. to estimate **fatigue** in concentrated contact and to control **abrasive** wear for self-sharpening and to estimate sliding **wear** in different contacts.

ContactEngineering.de

Michael Gleß (Dr.-Ing.)

70437 Stuttgart

Telefon 0711 500 77 431

eMail Contact@ContactEngineering.de

